產品別名 |
肥料用Y氨基丁酸 |
面向地區(qū) |
全國 |
50mmol/L GABA和不同鹽濃度會對植物幼苗產生不同的影響,當NO3-離子低于40mmol/L時,GABA會刺激 根伸長,當NO3-離子大于40mmol/L時GABA會抑制根伸長。并且GABA刺激低濃度的NO3-吸收,抑制高濃度NO3-的攝取,而GS等酶被氮調控,以上研究認為氮對調控植物生長有一定作用。在NaCl(50mmol/L)刺激下,植物的糖基化代謝會發(fā)起變化,并影響包括三羧酸循環(huán)、GABA代謝、氨基酸合成和莽草酸介導的次級代謝等發(fā)生變化。較高的鹽離子會導致大豆的多胺氧化降解為GABA。植物GABA受體具有調節(jié)pH和Al3+的根耐受性。
細菌侵染過程中的植物GAD表達量和γ-羥基丁酸轉錄豐度會上升,致使GABA升高。高GABA合成水平的煙草對根癌土壤桿菌C58感染敏感性有所下降。GABA可誘導農桿菌ATTKLM操縱子表達,使得N-(3-氧代辛?;└呓z氨酸內酯的濃度減少,群體感應信號(或激素)下調,影響其對植物的毒性。GABA在植物與細菌的信號交流中也發(fā)揮作用,GABA可以抑制細菌內Hrpl基因表達(Hrpl基因編碼蛋白使得植物致敏或引起其組織疾病),同時抑制植物體內hrp基因表達,使得植物免于過敏反應(hrp:控制植物病原體致病能力,并引起過敏反應)。
此外,GABA還具有催熟作用。GABA可以通過刺激1-氨基環(huán)丙烷-1-羧酸(ACC)合成酶轉錄豐度刺激乙烯生物合成。而水澇下乙烯可以通過促進不定根的生長為植物提供氧氣。高濃度GABA可抑制植物和細菌GABA轉氨酶(GABA-T,GABT)突變體的生長,高濃度下可抑制細菌在植物內的繁殖。番茄中的GABA-T被抑制會導致GABA的積累,使番茄出現(xiàn)矮小癥。
歐洲食品安全局(EFSA)雖然允許食物中添加GABA,規(guī)定GABA的膳食攝入量上限為550mg/d,但是其主要功能特性尚需嚴格的人群試驗結果加以佐證。美國食品藥品監(jiān)督管理局(FDA)根據(jù)毒理學實驗結果指出食品中添加GABA是安全的,使用范圍包含飲料、咖啡、茶和口香糖等,但不允許在嬰兒食品、肉制品或含肉產品中添加。中國衛(wèi)生部2009年12號公告,GABA攝入量不得超過500mg/d,使用范圍為飲料、可可制品、巧克力及其飲料、糖果、焙烤食品和膨化食品,但嬰兒食品中不能添加。
微生物發(fā)酵法是通過選擇品種優(yōu)良、穩(wěn)定以及無害的菌種,利用這些菌種在生長繁殖的過程中對GABA進行制備和產出。這種方法雖然對環(huán)境的要求比較苛刻,對設備的要求較高,但是此法產出的GABA可作為天然的食品添加劑。利用微生物發(fā)酵生產,是食品行業(yè)中發(fā)展早,領域廣泛的生產方式之一,早利用的微生物是大腸桿菌,利用它的脫羧酶可生產GABA,但是由于其本身存在一些安全隱患,使其一直無法直接用于藥品或者食品的生產制作。
在高等植物中,GABA的代謝主要由三種酶參與完成,在GAD作用下,L-谷氨酸(glutamic acid,Glu)在α-位上發(fā)生不可逆脫羧反應生成GABA,然后在GABA轉氨酶(GABA transaminase,GABA-T)催化下,GABA與丙酮酸和α-酮戊二酸反應生成琥珀酸半醛,后經琥珀酸半醛脫氫酶(succinic semialdehyde dehydrogenase,SSADH)催化,琥珀酸半醛氧化脫氫形成琥珀酸終進入三羧酸循環(huán)(krebs circle)。這條代謝途徑構成了TCA循環(huán)的一條支路,稱為GABA支路。
———— 認證資質 ————
最近來訪記錄