在停車場管理中,車牌識(shí)別技術(shù)也是識(shí)別車輛身份的主要手段。在深圳市建設(shè)的《停車庫(場)車輛圖像和號(hào)牌信息采集與傳輸系統(tǒng)技術(shù)要求》中,車牌識(shí)別技術(shù)成為車輛身份識(shí)別的主要手段。
汽車牌照號(hào)碼是車輛的“身份”標(biāo)識(shí),牌照自動(dòng)識(shí)別技術(shù)可以在汽車不作任何改動(dòng)的情況下實(shí)現(xiàn)汽車“身份”的自動(dòng)登記及驗(yàn)證,這項(xiàng)技術(shù)已經(jīng)應(yīng)用于公路收費(fèi)、停車管理、稱重系統(tǒng)、交通誘導(dǎo)、交通執(zhí)法、公路稽查、車輛調(diào)度、車輛檢測等各種場合。
系統(tǒng)進(jìn)行視頻車輛檢測,需要具備很高的處理速度并采用的算法,在基本不丟幀的情況下實(shí)現(xiàn)圖像采集、處理。若處理速度慢,則導(dǎo)致丟幀,使系統(tǒng)無法檢測到行駛速度較快的車輛,同時(shí)也難以在有利于識(shí)別的位置開始識(shí)別處理,影響系統(tǒng)識(shí)別率。因此,將視頻車輛檢測與牌照自動(dòng)識(shí)別相結(jié)合具備一定的技術(shù)難度。
自然環(huán)境下,汽車圖像背景復(fù)雜、光照不均勻,如何在自然背景中準(zhǔn)確地確定牌照區(qū)域是整個(gè)識(shí)別過程的關(guān)鍵。對采集到的視頻圖像進(jìn)行大范圍相關(guān)搜索,找到符合汽車牌照特征的若干區(qū)域作為候選區(qū),然后對這些侯選區(qū)域做進(jìn)一步分析、評判,后選定一個(gè)佳的區(qū)域作為牌照區(qū)域,并將其從圖像中分離出來。
牌照字符識(shí)別方法
主要有基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。基于模板匹配算法將分割后的字符二值化并將其尺寸大小縮放為字符數(shù)據(jù)庫中模板的大小,然后與所有的模板進(jìn)行匹配,選擇佳匹配作為結(jié)果?;谌斯ど窠?jīng)網(wǎng)絡(luò)的算法有兩種:一種是先對字符進(jìn)行特征提取,然后用所獲得特征來訓(xùn)練神經(jīng)網(wǎng)絡(luò)分配器;另一種方法是直接把圖像輸入網(wǎng)絡(luò),由網(wǎng)絡(luò)自動(dòng)實(shí)現(xiàn)特征提取直至識(shí)別出結(jié)果。
實(shí)際應(yīng)用中,車牌識(shí)別系統(tǒng)的識(shí)別率還與牌照質(zhì)量和拍攝質(zhì)量密切相關(guān)。牌照質(zhì)量會(huì)受到各種因素的影響,如生銹、污損、油漆剝落、字體褪色、牌照被遮擋、牌照傾斜、高亮反光、多牌照、假牌照等等;實(shí)際拍攝過程也會(huì)受到環(huán)境亮度、拍攝方式、車輛速度等等因素的影響。這些影響因素不同程度上降低了車牌識(shí)別的識(shí)別率,也正是車牌識(shí)別系統(tǒng)的困難和挑戰(zhàn)所在。為了提高識(shí)別率,除了不斷地完善識(shí)別算法還應(yīng)該想辦法克服各種光照條件,使采集到的圖像利于識(shí)別。